RCPA Small Biopsy Course, Adelaide, March 2019

Respiratory And Cardiac Pathology

Sonja Klebe & Douglas W. Henderson
Department of Surgical Pathology
SA Pathology at Flinders Medical Centre
Bedford Park, Adelaide
South Australia
'Small' Biopsies for Lung, Pleura

• How small is 'small'?: for this course, 'small' = any potential case in RCPA Small Biopsy Exam

• Some larger cases included…
General Principles

• Histologic pattern of non-neoplastic disease in lung bx often does not delineate specific disease entity, but rather a stereotypic pattern of tissue injury — for which there may be many causes and associations

• Importance of clinicopathologic correlation

• ALL information should be made available (e.g. HRCT etc)
Biopsy Dx Lung, Pleural Disease

- Diagnostic assessment often architectural (e.g. interstitial pneumonias)
- *Ergo*, the **bigger** the biopsy the **better**
- Small tissue samples often introduce an uncertainty factor
- Clinicopathologic correlation often crucial (e.g. radiology such as HRCT; if bx → NSIP pattern but HRCT → UIP, HRCT takes precedence)
- Value = dependent on experience/expertise of reporting radiologist
Lung Biopsy for Diffuse or Non-Neoplastic Disease

- Clinical circumstances determine work-up
- Immunocompromised patient:
 - Recurrence original disease (e.g. lymphoma-leukaemia)
 - Opportunistic/other infection (e.g. *Pneumocystis*)
 - Toxicity (e.g. anti-cancer drugs)
 - Bone marrow Tx: graft-versus-host disease
 - Something completely different
Immunocompetent Patient

- Biopsy work-up is different
- Different spectrum of disease
- Acute *versus* chronic disease: often chronic in case of interstitial pneumonias
- Clinical data again crucial:
 - Duration symptoms
 - ?Dust inhalation; other occupational exposure
 - Anatomic distribution disease
 - Choice of biopsy
Biopsy Work-up: Diffuse Disease

- Immunity OK
 - FRESH tissue for culture
 - Embed all tissue
 - H&E
 - D-PAS
 - Perls' for iron
 - Elastic-VG
 - Other: e.g. ZN
 - ± IPX: e.g. S100, CD1a for Langerhans' histiocytosis

- Immunity not OK
 - FRESH tissue for culture
 - Embed all tissue
 - H&E
 - Gram
 - D-PAS
 - Ag stains for fungi, *Pneumocystis*
 - Other: e.g. ZN, FF
 - IPX: CMV, *Pneumocystis*
Fibreoptic Bronchial Bx, TBBx

- High diagnostic yield: pathology centred on airways or widespread, and hence likely to be sampled
 - Central tumours
 - Sarcoidosis
 - Lung Tx rejection
 - Infection
 - Tracheobronchial amyloidosis
 - Alveolar proteinosis
Fibreoptic Bronchial Bx, TBBx

- Intermediate to low diagnostic yield: localization to airways absent, inconstant, fortuitous, or changes are non-specific and dx restricted by small tissue sample
 - Peripheral nodules
 - Langerhans' cell histiocytosis
 - Interstitial pneumonias*
 - Pneumoconioses*
 - Lymphoid infiltrates
 - Vasculitis syndromes
 - LAM: now a clinical/radiologic dx
Core Biopsy of Lung, Pleura

- Peripheral/pleural mass lesions
- May allow dx of multifocal non-neoplastic lesions such as BOOP
- Correlate with clinical and radiologic findings
- Diagnostic limitations imposed by small amount of tissue sampled
- In general, unsuitable for dx diffuse interstitial disease
Wedge Biopsy Lung (VAT, Open)

• Larger tissue sample than TBBx, more reliable for dx diffuse interstitial disease of any type
• Selection site(s) for bx
 – Correlate with radiology
 – Avoid areas of honeycomb change
• Fresh tissue for microbiology
• Inflation fixation
 – Pathologist or surgeon
 – Or: shake fresh tissue in formalin (also TBBx)
Lung Bx: Initial Checklist

• Why was bx taken?
• Any pre-bx Rx that could modify pathology?
• Recognize artefact such as compression and operative versus genuine haemorrhage, and incidental findings (e.g. minute meningothelioid nodules)
• What is anatomic distribution of disease?
 – Nodular versus non-nodular disease
 – Localisation to components of lung: bronchocentric, vascular, other
Case 1

Bronchial biopsy from a 74-year-old man with a history of chronic cough. Sputum culture had revealed a growth of an atypical mycobacterial species. At bronchoscopy, a plaque-like lesion was noted in a bronchial wall. The patient is said to have been immunocompetent
Case 1

• Diagnosis: Bronchial cryptococcosis
• Cryptococcosis: infection with *C. neoformans*
 – Pulmonary
 – Cerebromeningeal
 – Disseminated
• *C. neoformans*: yeast-like fungus, capsulated or unencapsulated (uncommon; immunocompetent), 2–20 μm, usually 4–6 μm in lung
 – *C. neoformans* var *neoformans* (worldwide, soil)
 – *C. neoformans* var *gattii* (River Red Gum)
Pulmonary Cryptococcosis

- Immunocompetent vs immunoincompetent
 - Defects in T-cell immunity
 - Haematologic malignancies (Hodgkin lymphoma), steroids, diabetes, HIV, sarcoid
- Immunocompetent: nodule/mass (asymptomatic), multifocal nodules, consolidation
- Immunocompromised: diffuse, bilateral, reticular/nodular/miliary lesions or consolidation ± cavitation ± pleural effusion
Case 2

Core biopsy of lung from a 65-year-old woman. No other clinical details were submitted.
Case 2

- **Diagnosis: Organising pneumonia (BOOP/COP)**
- COP = idiopathic bronchiolitis obliterate (organising pneumonia (BOOP))
- COP is preferred terminology but is essentially and implicitly a clinicopathologic diagnosis
- BOOP as histologic dx, either of known cause/association, or unknown (ambiguity)
- **Remember:** dominant feature = organising pneumonia (cf. obliterative bronchiolitis *per se*), and this is perfectly adequate histologic dx
Organising Pneumonia/BOOP

• Confusion!! Histologic pattern = non-specific reaction to wide range lung injuries (including lung infection).

• Ergo, term organising pneumonia arguably better than either BOOP or COP because latter two (may) imply idiopathic BOOP

• Diagnosis of COP/idiopathic BOOP involves exclusion of known causes/associations for organising pneumonia (e.g. absence any micro-organism)
Idiopathic BOOP/COP

• Main histologic findings
 – Patchy organising pneumonia
 – Preservation lung architecture
 – Temporal uniformity

• Negatives
 – Absence chronic interstitial fibrosis (problem: BOOP with interstitial scarring, or DIF with superimposed organising pneumonia??)
 – NO granulomas, neutrophils, abscesses, hyaline membranes/airspace fibrin, vasculitis
Organising Pneumonia/ BOOP

- Associations
 - Idiopathic BOOP/COP
 - Localised organising pneumonia
 - Idiopathic
 - Airway obstruction
 - Nearby other lesion e.g. lung cancer, abscess, infarct
 - Nonbacterial infection (viral, fungal, *Pneumocystis*)
 - Hypersensitivity pneumonitis
 - Vasculitis
 - Haemorrhage/haemosiderosis
 - Radiation
 - Other
Case 3

Wedge biopsy of lung from a 58-year-old man who presented with "multiple small nodules" in his lungs. The patient had a family history of silicosis and had sustained exposure to asbestos for more than 20 years.
Case 3
(Nodular and Cystic Interstitial Disease)

- **Diagnosis:** Pulmonary Langerhans' cell histiocytosis (PLCH)

- **PLCH:** Chronic progressive, indolent or remitting proliferation Langerhans' histiocytes → bilateral peribronchiolar and interstitial nodules, may cavitate

- Usually restricted to lung in adults but can also affect other sites: bone, lymph nodes, skin in 10-15%

- Rare: <2-5% biopsy cases DILD
Langerhans' Cell Histiocytosis

- Virtually all adult cases PLCH are smokers
- ?Role TNF-α, GM-CSF
- ?Role bombesin from NE cells: → recruit macrophages
- ~25% asymptomatic
- Symptoms:
 - Dyspnoea ~40-85%
 - Cough, pleuritic chest pain
 - Pneumothorax 25%
Langerhans' Cell Histiocytosis: Dx

- Clinical/radiologic (esp HRCT)
- Fibreoptic TBBx + BAL: TBBx +ve <50%
- BAL alone: but ↑Langerhans' cells in BALs in other DILDs and in smokers without PLCH
- Wedge biopsy:
 - Multiple nodules, stellate, bronchiolocentric ± interlobular septa and pleura; ± eosinophils; ± cavitation
 - Cellular → fibrotic (scars retain stellate outline) ± honeycombing
 - IPX: S-100, CD1a
 - EM: pentalaminar LCG (Birbeck) granules
Tobacco Smoke-Related Lung Disorders

- 'Chronic bronchitis' and emphysema, and interstitial fibrosis
- Respiratory bronchiolitis (RB)
- Respiratory bronchiolitis-interstitial lung disease (RB-ILD)
- Desquamative interstitial pneumonia (DIP)
- Pulmonary Langerhans' cell histiocytosis
- Lung Cancers:
 - Risk: small cell ca > squamous and large cell ca > adenocarcinoma
Case 4
(Non-nodular Interstitial Disease)

Wedge biopsy of lung from the lingula of 38-year-old man with a clinical background of interstitial lung disease
Case 4

• Diagnosis: Usual interstitial pneumonia (UIP)
• Stereotypic pattern chronic lung disease
• UIP pattern in:
 – Collagen-vascular diseases
 – Drug-induced pneumonia
 – Radiation pneumonitis
 – Familial idiopathic pulmonary fibrosis
 – Hermansky-Pudlak syndrome
 – Asbestosis
 – Hypersensitivity pneumonitis (late-stage)
ATS/ERS Interstitial Diseases

• Chronic
 – Usual interstitial pneumonia (UIP/IPF)
 – Desquamative interstitial pneumonia (DIP)
 – Non-specific interstitial pneumonia (NSIP)
 – Lymphocytic interstitial pneumonia (LIP)

• Acute
 – Organizing pneumonia (BOOP/COP)
 – Diffuse alveolar damage (DAD)
UIP Versus NSIP

<table>
<thead>
<tr>
<th></th>
<th>UIP</th>
<th>NSIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>51</td>
<td>49</td>
</tr>
<tr>
<td>Sex (M:F)</td>
<td>73:37 (2:1)</td>
<td>28:27 (1:1)</td>
</tr>
<tr>
<td>Symptoms</td>
<td>2.5 y</td>
<td>8/12 (1/52 to 8 y)</td>
</tr>
<tr>
<td>Temporality</td>
<td>Variegated</td>
<td>Uniform</td>
</tr>
<tr>
<td>Inflammation</td>
<td>Mild</td>
<td>Mild → marked</td>
</tr>
<tr>
<td>Fibrosis</td>
<td>Patchy</td>
<td>Diffuse/patchy</td>
</tr>
<tr>
<td>Honeycomb</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Org pneumonia</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Fibroblast foci</td>
<td>Characteristic</td>
<td>Nil/inconspicuous</td>
</tr>
<tr>
<td>5-yr survival</td>
<td>20-45%</td>
<td>90%</td>
</tr>
<tr>
<td>10-yr survival</td>
<td>10-15%</td>
<td>35%</td>
</tr>
</tbody>
</table>
Case 5

"68 yr female. L lower lobe. ?AdenoCa or bronchiolo-alveolar. Non smoker"
Case 5

- Diagnosis: Peripheral invasive adenocarcinoma with lepidic and acinar features + multiple carcinoid tumourlets

- Lesser papillary and micropapillary features

- Quantify each + comment on STAS

- CK7+/CK20-/TTF1+ immunoprofile

- Three carcinoid tumourlets, all <5 mm in diameter, syn+/chr+/CD56+
An approach for testing for predictive biomarkers in patients with lung carcinoma in Australia

Diagnosis

- P40+
P40-
- TTF1-
- NSCLC NOS OR favour SCC

Biomarkers-Approved

- PDL1
- EGFR
- FISH if IHC +
- ROS1

Biomarker-Other

- KRAS
- DNA extraction
- HER2
- BRAF

MDT input/clinical considerations

Some done as part of panel e.g. oncofocus

Modified from Manfred Dietel et al. Thorax 2016;71:177-184
Importance of manual microdissection as a prerequisite for reliable and reproducible analyses in molecular pathology.
Molecular Testing: Key Points

- NSCLC is a ‘last resort’ diagnosis
- Molecular testing - generally, >50 cells required
- A negative result may not be informative
Bronchopulmonary NE Lesions

- NE hyperplasias
 - NE cell hyperplasia assoc with fibrosis or carcinoid
 - Diffuse idiopathic pulmonary NE cell hyperplasia (DIPNECH)
- Carcinoid tumourlet (<5 mm by definition)
- Typical carcinoid
- Atypical carcinoid
- Large cell NE carcinoma (LCNEC)
- Small cell carcinoma (SCLCA)
- ?Large cell carcinoma with NE staining on IPX
- ?LCNEC but IPX negative
Criteria for NE Tumours of Lung

• **Typical carcinoid**
 – >5 mm
 – Carcinoid histology
 – <2 mitoses/2 mm² (10 HPF)
 – No necrosis

• **Atypical carcinoid**
 – 2-10 mitoses/2 mm²
 – Or: necrosis

• **Large cell NE carcinoma**
 – NE histology: micro-organoid, palisading
 – 11+ mitoses/2 mm² (median = 70)
 – Cytologic features NSCLCa
 – Positive IPX for 1+ NE markers, or NSG on EM
Key Points

- Things to include in report:
- Distinction between typical vs atypical carcinoid cannot be established from FBBx in most instances
- Entire resected specimen required
Case 6 (16/S07588)

- Right ventricular endomyocardial biopsy from an 87 year old male with restrictive-type cardiomyopathy.

 - H&E stained section
Restrictive Cardiomyopathy

- LV rigid & unyielding; requires high diastolic filling pressure; systolic contraction normal
- Infiltrations
 - Amyloidosis
 - Sarcoidosis
 - Haemachromatosis
 - Idiopathic diffuse fibrosis and end-stage DCM
- Early endomyocardial fibrosis (EMF)
- Endocardial fibroelastosis (EFE)
Case 7 (15/S12597)

- 55 year old male. ? cardiomyopathy
 - H&E stained section
Giant cell myocarditis vs. Sarcoid

- Giant cell myocarditis
 - Rapid clinical course
 - Macroscopic areas of myocardial necrosis
 - Myogenic giant cells at margins of necrosis
 - No granulomata elsewhere

- Sarcoidosis
 - Prolonged course
 - Macroscopic areas of myocardial fibrosis
 - Follicular collections of giant cells
 - Granulomata elsewhere
Sarcoidosis

• multi-organ granulomatous disorder of unknown aetiology which often affects lung, but also other tissues, including lymph nodes, liver, spleen, skin, heart, eye, CNS

• An enigma wrapped in mystery (?related to mycobacterial infection or others)

• Proclivity for Scandinavians, Irish, blacks in US

• ?Role genetics/familial factors
Sarcoidosis

• Diagnosis = demonstration of non-necrotising epithelioid (sarcoidal) granulomas by bx of the most accessible organ by least invasive method

• Dx can be clinical/radiologic only (e.g. Löfgren's syndrome), but definitive dx = CPC correlation

• Hilar ± mediastinal lymph node ± nodular disease on CXR/CT

• Variants:
 – Necrosis (up to 1/3)
 – Endobronchial sarcoidosis
 – Vascular intrusion (up to 50%)
 – Nodular sarcoidosis (<5%)
 – Necrotising sarcoidal granulomatosi (cf. Wegener's)
Sarcoidosis

• Granulomas follow lymphatic pathways
• Exclude TB (ZN, CPC) for anyone from region where TB endemic
• Inclusions
 – Asteroid bodies
 – Schaumann bodies (Ca^{++})
 – Hamazaki-Wesenberg bodies in lymph nodes
Granulomas in lung

- Infections! MUST exclude TB
- Fungi, others
- Sarcoidosis
- FB/aspiration
- Necrotic tumour
- Silicotic nodules
Case 8 (14/S125132)

- 21-year old male - cardiac Tx 4 years ago.?
 - rejection.
 - H&E stained section + VVG stained sections
DIAGNOSIS:

ACUTE REJECTION:
GRADE 3B (MODERATE) 1990 ISHLT
GRADE 3 R (SEVERE) 2004 REVISED ISHLT)
Table 1. ISHLT Standardized Cardiac Biopsy Grading: Acute Cellular Rejection\(^b\)

<table>
<thead>
<tr>
<th>Grade 0 R(^a)</th>
<th>No rejection</th>
<th>2004</th>
<th>1990</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1 R, mild</td>
<td>Interstitial and/or perivascular infiltrate with up to 1 focus of myocyte damage</td>
<td>Grade 1, mild</td>
<td>Focal perivascular and/or interstitial infiltrate without myocyte damage</td>
</tr>
<tr>
<td></td>
<td>A—Focal</td>
<td>B—Diffuse</td>
<td>Diffuse infiltrate without myocyte damage</td>
</tr>
<tr>
<td>Grade 2 R, moderate</td>
<td>Two or more foci of infiltrate with associated myocyte damage</td>
<td>Grade 2 moderate (focal)</td>
<td>One focus of infiltrate with associated myocyte damage</td>
</tr>
<tr>
<td>Grade 3 R, severe</td>
<td>Diffuse infiltrate with multifocal myocyte damage ± edema, ± hemorrhage ± vasculitis</td>
<td>Grade 3, moderate</td>
<td>Multifocal infiltrate with myocyte damage</td>
</tr>
<tr>
<td></td>
<td>A—Focal</td>
<td>B—Diffuse</td>
<td>Diffuse infiltrate with myocyte damage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grade 4, severe</td>
<td>Diffuse, polymorphous infiltrate with extensive myocyte damage ± edema, ± hemorrhage ± vasculitis</td>
</tr>
</tbody>
</table>

\(^a\)Where “R” denotes revised grade to avoid confusion with 1990 scheme.

\(^b\)The presence or absence of acute antibody-mediated rejection (AMR) may be recorded as AMR 0 or AMR 1, as required (see Table 3).